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Abstract 

A new multi-dimensional search approach, incor- 
porating packing criteria with R-factor calculations 
for low-resolution X-ray data, proved to be extremely 
efficient for the solution of large molecular structures. 
A computer program, ULTIMA, based on this 
approach solved ab initio the structure of a double- 
helical DNA octamer and also reproduced the correct 
solutions of a double-helical DNA dodecamer and 
of a tRNA molecule (322, 486 and 1652 non-hydrogen 
atoms, respectively). The efficiency of the procedure 
is enhanced by using group scatterers in lieu of 
individual atoms. The method allows, for more com- 
plex structures, the separation of parameters in the 
multi-dimensional space, either by using one- 
dimensional reflection data or by approximating the 
entire molecule to a 'super-atom' scatterer. 

Introduction 

We have shown (Rabinovich & Schmidt, 1966) 
that small molecular structures can directly and effi- 
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ciently be solved by a systematic search procedure 
(SEARCH) using geometrical criteria such as global 
molecular packing considerations and hard-sphere 
atom-atom contacts. The method owes its efficiency 
to a set of multi-level sieving operations, by means 
of which only a limited number of accepted trial 
structures are left for further examination by struc- 
ture-factor calculations. 

This procedure proved, however, to be inefficient 
for large molecular structures since it was time con- 
suming as a result of the large number of atoms. It 
also yielded too many accepted trial structures 
because of the rather small number of intermolecular 
atom-atom contacts resulting from the fact that a 
large fraction of the unit-cell volume consists of sol- 
vent molecules. We have, therefore, developed a new 
multi-dimensional search approach, incorporating 
global packing criteria with structure-factor calcula- 
tions for very-low-resolution X-ray data, which 
proved to be extremely efficient for the solution of 
large molecules. A computer program, ULTIMA, 
based on this approach, solved ab initio the structure 

O 1984 Internat ional  Union  of  Crystal lography 



196 STRUCTURE DETERMINATION OF LARGE MOLECULES 

of the DNA double-helical octamer d(GGTATACC)2 
(Shakked et al., 1981) and also reproduced the correct 
solutions of the DNA double-helical dodecamer 
d(CGCGAATTCGCG)2 (Wing et al., 1980) and of 
tRNA Phe (Kim et al., 1973; Robertus et al., 1974). 

Methods 

Generation o f  trial structures 

The first stage in our method is the systematic 
generation of trial structures. This is achieved by 
defining the model of the generating unit (which, as, 
for example, in cases where the models occupy special 
positions, need not be identical with the asymmetric 
unit of the unit cell) by specifying its atomic coordin- 
ates, mi(i = 1,2, 3), in an orthogonal system defined 
by the three principal axes ofinertia, M~, of the model. 
The inertial system allows the definition of the global 
dimensions of the generating unit, i.e. we approximate 
it to an ellipsoid where the lengths of the major, mean 
and minor axes, m °, m °, and m ° are the maximum 
extensions of the model along the three principal axes 
of inertia. 

A trial structure may now be generated by specify- 
ing (a) the orientation of the M~ system with respect 
to the unit-cell axes; (b) the position of the origin of 
M~ in the unit cell; and (c) the operation of the 
space-group symmetry elements on the generating 
unit. 

It is convenient to define the orientation of M~ in 
the unit cell by using the three Eulerian angles 
(q~, @, 0) specifying the rotation of Mi with respect to 
an orthogonal system, L,  embedded in the unit cell. 
Li is defined by the matrix T. 

1959), is 

F cos ~, cos @ sin ~p cos 0 sin @ sin 0-] 
l - s i n  ~, sin @ cos 0 +cos ~ sin @ cos 0 0j R = 1 - c o s  ~, sin @ -s in  ¢ sin @ cos @ sin . 

- s in  ~o cos @ cos 0 +cos ~o cos @ cos 0 

L_ sin ~o sin 0 - c o s  ~p sin 0 cos 0 

(3) 

m,,, 
- ÷ Z~P " - ~  +ZlP 

The relative orientation of Mi and Li and the defini- 
tion of the Eulerian angles ~, @, 0 are shown in 
Fig. 1. 

The position of the origin of Mi in the unit cell is 
defined by a vector u (u~ = u, u2 = v, u3 = w). For given 

unit cell and space group and given generating unit, 
any possible trial structure may be defined by specify- 
ing the six parameters ~0, @, 0, u, v, w. A systematic 
generation of a set of trial structures is accomplished 
by constructing a six-dimensional grid in this para- 
meter space. 

The asymmetric volume of the space that needs to 
be searched is defined by the Cheshire group and the 
symmetry of the generating unit (Hirshfeld, 1968). 

Elimination o f  grid points by packing considerations 

The number of trial structures thus generated is 
large even for a coarse grid. A considerable fraction 
of this number can be eliminated by global-packing 
considerations. The elimination process is performed 
separately for the rotational and translational grids. 
In the former, for any orientation R(~, @, 0) the ellip- 
soid-to-ellipsoid contacts (Fig. 2) are computed 
between the generating unit and its translation-related 
neighbours up to a preset radial distance. These con- 
tacts, which depend solely on the orientation of the 
generating unit and not on the position of its origin 
u, are evaluated by the quadratic form 

Q = IRARI ,  (4) 

M3 

M2 

" L:  

J L, x M, 
Lt 

Fig. 1. Re la t ive  o r i e n t a t i o n  o f  M ,  a n d  L~ a n d  the  def in i t ion  o f  the  
E u l e r i a n  ang les  ~p, @, 0. 

Ang le  f r o m  to r a n g e  (°) 
~p L~ L 3 x M 3 0 - 3 6 0  
~b L 3 X M 3 M l 0 - 3 6 0  
0 L 3 M 3 0 - 1 8 0  

Li = ~ Tva j (al = a, a2 = b, a 3 = e). (1) 
J 

We can now express the fractional coordinates, r, 
of the atoms in the generating unit, when its origin 
coincides with that of the unit cell by the following 
transformation: 

r = m R T ,  (2) 

where R, the Eulerian angle matrix (Goldstein, 

Fig. 2. E l l i p s o i d - t o - e l l i p s o i d  con tac t s .  Q = 4 a n d  Q > 4 fo r  el l ip-  
so ids  1 a n d  2, r espec t ive ly .  T h e  g e n e r a t i n g  uni t  e l l i p so id  is at 0. 
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where I is the vector from the origin of the generating 
unit to one of its translation-related neighbours, R is 
the corresponding Eulerian-angle matrix for that rota- 
tional grid point and A is a diagonal matrix related 
to the canonical representation of the ellipsoid of the 
generating unit: 

A,, = (m°/2  + Ap) -2. (5) 

For contacting ellipsoids Q = 4, so that a rotational 
grid point is eliminated when Q-< 4 for any lattice 
vector !. If we wish, however, to allow some inter- 
penetration of the ellipsoids a scalar P < 4 is chosen 
such that the elimination criterion is Q < P. The test 
is performed for all 

I11 <- m ° + 2Ap. 

Analogously, a large fraction of the translational 
grid points can be rejected by virtue of their proximity 
to the several elements of symmetry of the unit cell 
which may lead to 'bumping'  (see, e.g., Fig. 3). A grid 
point u is rejected when the following condition (6) 
is fulfilled for any one of the us symmetry-related 
points 

lu-u~] <_ m ° + 2Ab,  (6) 

where Ab, like Ap, allows for more flexibility in the 
presetting of the bumping distance. 

Each of these two tests is very fast as it is performed, 
independently of the other, in its own subspace and 
depends solely on the global molecular parameters 
and not on the detailed structure of the generating 
unit. This strategy usually results in a considerable 
decrease in the number of trial structures that need 
to be further examined. 

S i f t ing  trial s t ruc tures  by s t ruc ture- fac tor  calcula t ions  

The remaining trial structures are subjected to 
structure-factor calculations serving as an ultimate 
criterion for acceptability. The use of the transforms 
of the atoms of the generating unit, G~(H), and the 
fringe functions of the translations of its origin G~(H) 
allows extremely fast calculations (Lipson & Cochran, 
1957; Rae, 1977). The structure factor Fc(H) is 

f -  I u- u s I ~ m~÷ezae 
f 

Fig. 3. Rejection of translational grid points by twofold rotation 
axis. All points within the hatched volume are rejected. 

given by 

Fc(H) = ~'. G~(H). G~(H) (7) 
s 

G~(H) = exp (27rill. u,) (8) 

G~(H) = ~ f j  exp (27rills. rj), (9) 
J 

where the first summation is over all the s symmetry 
operations, rj are the atomic radius vectors, evaluated 
by (2), and fj are the atomic scattering factors. 
Expression (9), which involves summation over all 
atoms in the asymmetric unit, is computed only once 
for each accepted orientation. The set of G~(H) is 
computed only once for each accepted translation. 

A great improvement in the performance of the 
method is achieved by using group scatterers gj 
instead of the individual atomic scatterers f~. For 
example, in nucleic-acid structures each of the three 
basic components, the phosphate, sugar or base, is 
treated as a single scatterer positioned at the center 
of mass with a spherically averaged group scattering 
factor, given by 

g~ = Y.f~, +2 Y Y ~ f j q s i n ( l z R p q ) / ~ R p q ,  (10) 
P P > q  

where /x--47r sin 0/A. The first summation extends 
over all atoms in the group and the second over every 
pair of different atoms in the group, Rpq being the 
distance between atoms p and q with scattering fac- 
tors fp, fq (Zernicke & Prins, 1927; Debye & Mencke, 
1931). 

Several criteria for testing the agreement between 
the observed and calculated structure factors were 
considered, e.g. product functions, correlation func- 
tions and the discrepancy R. The R factor, which is 
more indicative for further refinement, was also found 
to be more discriminative. Accordingly, the final 
sifting was performed by selecting the set of trial 
structures (typically 20) with the lowest R and then 
subjecting them further to a rigid-body least-squares- 
refinement procedure to yield the correct structure. 

Results and discussion 

T h e  U L T I M A  program was first applied during our 
attempts to solve the structure of the octamer 
d(GGTATACC)2. This structure (I) appeared to be 
an ideal candidate for search methods, since, firstly, 
reliable models for the various types of DNA struc- 
tures are available from X-ray diffraction analysis of 
DNA fibers (Arnott & Hukins, 1972) and, secondly, 
as the space group is polar, the parameter space to 
be searched is only five-dimensional and thus reason- 
able computing time might be anticipated. 

Two possible models were considered, the A and 
B forms of DNA. An attempt to obtain the orientation 
of the models by means of the rotation functions 
(Argos & Rossmann, 1980) failed as no unambiguous 
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Table 1. Results o f  computer experiments 

d(GGTATACC)2 (I) d(CGCGAATTCGCG)2 (II) tRNAehe(Hl) 
a,b, ctA)o6 45 45 42 25 40 66 33 56 161 
m 0, m2, m 3 (/~) 30 21 18 39 19 19 85 63 29 
P, Ap(A) ,Ab(A)  4 0 1-5 3.5 1.5 1.5 2 - 1  0 
Space group P61 P212121 P21221 
Cheshire group ZI622 Pm m m Pmm m 
Molecular  symmetry 2 2 l 
Number  of  atoms 322 486 1652 
Number  of  groups 46 70 228 
Asymmetric volume (°) 60 x360 x90 180 x 180 x90 180 x 180 x 180 

( )  ~ a×b×~ ~a×~b×~c ~ ×~b ×-~c 
Grid steps AO (0) 30/sin 0, 30, 30 22.5/sin 0, 22-5, 22.5 15/sin 0, 15, 15 

A U(A)  3 3 0 3 3 3 4 4 4 
Number  of  calculated grid points 72 x 225 200 x 308 1092 x 560 
Number  of  searched " points 72 x24 128 x 162 303 x294 
Resolution range (A) grid 25--10 25-10 50--16.5 
Number of  reflections 28 49 47 
R 42 42 40 
R~b 23 28 20 
Maximum parameter  shifts 12 °, 1.4 A 6 °, i .6 /~  10 °, 3/~, 
CPU time (s) 13 74 315 

peaks were discernible. An attempt to solve the struc- 
ture by the multi-dimensional S E A R C H  method 
(Rabinovich & Schmidt, 1966) was time consuming 
and ended in too many acceptable structures for 
further examination. 

The structures of both (I) and its 5-bromouracil 
analog were eventually solved by the first-version 
U L T I M A  program, using individual atomic scatterers 
(Shakked et al., 1981). 

In order to find the optimal working conditions 
and to study the several input variables for this 
method, two additional known structures were 
analyzed (Table 1). The DNA dodecemer (II) (Wing 
et al., 1980) was chosen since it represents another 
large structure, but this time with six degrees of free- 
dom, whereas the tRNA molecule (III) (Kim et al., 
1973; Robertus et al., 1974) served as an example of 
a considerably larger structure with a less-regular 
shape. 

Table 1 lists the constants and input variables, as 
well as the results of the computer experiments. Of 
utmost importance for an optimal use of the method 
is the resolution limit dlim. A low resolution entails 
fewer reflections and coarser grid, and thus shorter 
runs as well as relative insensitivity to differences 
between the model and the real structure. On the 
other hand, too low a resolution would jeopardize 
the discriminative power of the method. The optimal 
value of dlim may be obtained by considering the 
transform G(s) of a distribution of a spherical shell 
of diffracting matter of uniform density unity and 
radius R = m°/2. 

G(s) = 47rR2(sin 2~Rs)/27rRs, (11) 

where the reciprocal vector s is related to the resol- 
ution d by d = s -~. The nodal spheres of zero value 
are at reciprocal radii s = n / m  °. If the limiting sphere 
of the radius Slim includes the first two of the nodal 
spheres (n =2), enough information about G(s) is 

available to give a fairly accurate idea of the distribu- 
tion (James, 1962). Accordingly, a fair estimate of 
dlim is 

dlim ~- m°/2. (12) 

A lower cut-off value can also be applied to eliminate 
the lowest-order reflections which are mostly affected 
by the solvent. 

Again, the size of the grid steps must be chosen 
judiciously. Small intervals result in excessive com- 
puting time, while too large ones might miss the 
correct structure. 

A rough estimate of the rotational grid step, AO, 
is obtained by calculating the angle necessary to move 
the end of the Slim vector by one reciprocal geometric 
mean diameter of the generating unit, (m°m°m°)  -I/3, 
Le. 

,4 e..,o.~o.~,oa- 1/3 (13) 
Z ~ )  = t41im\, , , i , , ,2, , ,31 . 

An estimate of A U, the translational grid step (A), 
is obtained by considering the fringe function G~'(H) 
(8), and setting H.u = Slim A U = ~, thus allowing a quar- 
ter-cycle phase shift in the fringe function at the 
extremity of the resolution limit. This equality yields 

AU. - .m° /8 .  (14) 

The three other variables, P, Ap and Ab, which are 
functions of the unit-cell dimensions and the generat- 
ing unit axes, determine the number of rotational and 
translational grid points that are eliminated. Hence, 
P, which allows for ellipsoidal interpenetration, is 
irrelevant when the largest molecular axis m ° +2AP 
is smaller than the shortest lattice vector, as is the 
case in (I). 

In (II), which is a rod-shaped molecule, the ellip- 
soidal approximation is quite realistic, as may be 
judged either by drawing the molecule and the ellip- 
soid or by calculating the volume packing ratio 

Vr = [ nTrm ° m O m O/ 6 I/] = 0.45, 
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where V is the unit-cell volume containing n ellip- 
soids. Here we use zip = 1.5 to account for the fact 
that the ellipsoid axis'lengths were determined by the 
group-scatterer positions, rather than by the 
individual atoms, thus yielding a somewhat contrac-. 
ted model. P was set to 3.5 to allow for some inter- 
penetration in order to minimize the risk of missing 
the correct solution. 

In (III), an L-shaped molecule, the ellipsoidal 
approximation is poorer, resulting in too large a gen- 
erating unit, V = 1.09. Here we use Ap = -1  (perhaps 
too pedantic, Ap = 0 would do as well) and P = 2, to 
allow for deep interpenetration. 

An estimate of Ab can be derived by comparing 
m ° and the shortest lattice translation. In (II) and 
(III), where the two differ by little, we set m ° +2Ab 
somewhat smaller than the shortest translation; in (I) 
we use Ab= 1.5. The use of these variables has 
reduced the humber of grid points to be searched by 
factors 9, 3 and 7 for (I), (II) and (III), respectively. 

Table 1 also lists the Cheshire group (Hirshfeld, 
1968), the molecular symmetry and the dimensions 
of the asymmetric multi-dimensional Volume to be 
searched, and also shows the large economy achieved 
through the use of group scatterers. The validity of 
this approximation was tested independently by com- 
paring structure factors calculated by this approxima- 
tion, and by individual atom scatterers. It was found 
that the differences were negligible to a resolution of 
about 6/~, well below the working range of our 
method. 

The R factor of the correct structures, and the 
rigid-body refined values Rrb are listed together with 
the maximum shifts in O and U accompanying the 
refinement procedure. It is noteworthy that more than 
one of the twenty lowest-R-factor structures refined 
to the correct one; the entries in Table l are those 
related to the maximum shifts. 

The idealized models of (I) and (II) were taken 
from Arnott & Hukins (1972). For (III) the refined 
structure of the monoclinic form (Hingerty, Brown & 
Jack, 1978) was taken as the model. The r.m.s, devi- 
ations of the groups, for the best molecular fit between 
the model used in ULTIMA and the finally refined 
structures, are 1.0, 1.5 and 1.0/~ for (I), (II) and (III), 
respectively. 

In view of the space group (P6~ or P65) and the 
model (A or B form) ambiguities in (I), four combina- 
tions were tried with the same run variables, and 
while the values of the lowest R factors differ by no 
more than a few percent, only the correct combination 
( A - P 6 0  refined to a significantly lower Rrb value. 
The refinement of (I) and its 5-bromouracil analog 
was continued with a constrained-restrained least- 
squares program, CORELS (Sussman, Holbrook, 
Church & Kim, 1977), yielding R factors of 20 and 
14% at a resolution of 1.8 and 2.25/~, respectively 
(Shakked et aI., 1983). 

The last entry in Table 1 gives the CPU time con- 
sumed on an IBM 370/165 computer using an exten- 
ded H compiler. For (I) and (II) the times are almost 
ridiculously small, for (III) it is still comfortable. It 
is obvious, however, that in the case of considerably 
larger structures the multi-dimensional approach, 
notwithstanding its merits, may become inefficient as 
far as computing time is concerned. A way out of this 
difficulty is the partitioning of the multi-dimensional 
space into independent subspaces, i.e. to apply an 
appropriate separation of the space parameters. Here 
we offer two distinct procedures to accomplish this 
separation. 

Use of  one-dimensional diffraction data 

Examination of the Eulerian matrix (3) reveals that 
its third column is a function of two parameters, ~b 
and 0, only. By proper choice of the Li system, through 
the T matrix (2), a translational parameter can be 
defined in such a way that the structure factors of a 
set of axial reflections can be a function of three 
parameters only. For example, the set of structure 
factors for the 001 reflections would be a function of 
~, 0 and w only when L 3 = C. The best trial structures 
obtained by this fast three-dimensional search are 
used as the starting points for a second three- 
dimensional search involving ~0, u and v, using a set 
of general reflections hkl. This procedure is very fast 
and reduces computing time by more than an order 
of magnitude in both (II) and (III). However, it is 
not general enough, and may be completely inappli- 
cable when the number of axial reflections is very 
small, e.g. in (I), the number of 001 reflections pre- 
cludes the possibility of using this approach. 

The " superatom" approach 

In this approach, which is quite general, a separ- 
ation between the rotational and translational para- 
meters is achieved by going one step further in the 
scattering-factor approximation. The whole generat- 
ing unit is treated as a single spherical 'superatom'. 
The space to be searched now consists of the three- 
dimensional translational grid only. Again, a set of 
the best solutions consisting of the first ten lowest 
R-factor grid points is then searched in the rotational 
space. This apparently naive approximation proved 
to be successful and time-saving as it reduced the 
number of translational grid points by a factor of ten. 

To conclude, we have shown that the use of low- 
resolution X-ray diffraction data, which permits a 
rather coarse multi-dimensional grid, combined with 
rejection criteria based on global molecular packing 
considerations, results in an efficient method for gen- 
erating a reasonably small number of trial structures 
which may further be tested by R-factor calculation 
of higher-order data. The use of spherically averaged 
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group scatterers in lieu of individual atomic ones 
improves the efficiency by almost an order of magni- 
tude. We are currently testing the method on oligo- 
nucleotide and protein structures. 

We thank our colleagues J. L. Sussman and F.L. 
Hirshfeld for many useful discussions. 

References 

ARGOS, P. & ROSSMANN, M. G. (1980). In Theory and Practice of 
Direct Methods in Crystallography, edited by M. F. C. LADD & 
R. A. PALMER, pp. 361-416. New York: Plenum. 

ARNOTT, S. & HUKINS, D. W. L. (1972). Biochem. Biophys. Res. 
Commun. 47, 1504-1509. 

DEBYE, P. & MENCKE, H. (1931). Ergeb. Tech. Rontgenkd. 2, 1. 
GOLDSTEIN, H. (1959). Classical Mechanics, p. 107. London: 

Addison Wesley. 
HINGERTY, B., BROWN, R.S. & JACK, A. (1978). J. Mol. Biol. 

124, 523-534. 
HIRSHFELD, F. L. (1968). Acta Cryst. A24, 301-311. 

JAMES, R.W. (1962). The Optical Principles of the Diffraction of 
X-rays, p. 614. London: Bell. 

K1M, S.-H., QUIGLEY, G. J., SUDDATH, F. L., MCPHERSON, A., 
SNEDEN, D., KIM, J.J., WEINZIERL, J. & RICH, A. (1973). 
Science, 179, 285-288. 

LIPSON, H. & COCHRAN, W. (1957). The Determination of Crystal 
Structures, p. 235. London: Bell. 

RABINOVICH, D. & SCHMIDT, G. M. J. (1966). Nature (London), 
211, 1391-1393. 

RAE, A. D. (1977). Acta Cryst. A33, 423-425. 
ROBERTUS, J.D., LADNER, J.E., FINCH, J.T., RHODES, D., 

BROWN, R.S., CLARK, B.F.C. & KLUG, A. (1974). Nature 
(London), 250, 546-551. 

SHAKKED, Z., RABINOVICH, D., CRUSE, W. B.T., EGERT, E., 
KENNARD, O., SALA, G., SALISBURY, S. A. & VISWAMITRA, 
M. A. (1981). Proc. R. Soc. London Set. B, 213, 479-487. 

SHAKKED, Z., RABINOVICH, D., CRUSE, W. B.T., KENNARD, 
O., SALISBURY, S.A. & VISWAMITRA, M.A. (1983). J. Mol. 
Biol. 166, 183-201. 

SUSSMAN, J. L., HOLBROOK, S. R., CHURCH, G. M. & KIM, S.-H. 
(1977). Acta Cryst. A33, 800-804. 

WING, R. M., DREW, H. R., TAKANO, T., BROKA, C., TANAKA, 
S., ITAKURA, K. & DICKERSON, R. E. (1980). Nature (London), 
278, 755-758. 

ZERNICKE, F. & PRINS, J. A. (1927). Z. Phys. 41, 184. 

Acta Cryst. (1984). A40, 200-213 

An Analytical Method for Studying the Variation of the Interfacial Symmetry 
Due to Relative Displacements of the Bicrystal Components 

BY D. S. VLACHAVAS* 

Department of Metallurgy and Materials Science, The University of Liverpool, PO Box 147, Liverpool L69 3 BX, 
England 

(Received 17 December 1982; accepted 12 October 1983) 

Abstract 

This paper investigates changes of the bicrystal sym- 
metry caused by rigid-body relaxation. Analytical 
expressions are derived for the determination of the 
symmetry of a bicrystal, or, more generally, of a binary 
composite, corresponding to a particular relative dis- 
placement of its components. Such displacements can 
change the point and/or  space symmetry of the com- 
posite either by compressing symmetry operations or 
by transforming symmorphic symmetry operations to 
their nonsymmorphic counterparts, or vice versa. In 
the latter case the relative displacements have a well 
defined magnitude and direction and it is shown that 
the composite space groups associated with these 
displacements correspond to a new type of subgroups 
of space groups. These subgroups, although having 
the same unit cell as the original space group, are 
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similar to the klassengleiche subgroups in the sense 
that the descent in symmetry has affected the transla- 
tions in the unit cell of the original group. Further- 
more, it is pointed out that the reduction of symmetry 
due to relative displacements is accomplished by a 
multiplicity of crystallographically equivalent ways 
and that their number and interrelation depends on 
the space symmetry of the original composite. 

I. Introduction 

The crystallographic framework of planar grain boun- 
daries was recently discussed by Pond & Bollmann 
(1979). Their considerations, enabling the description 
of the interfacial symmetry, were based on the 
introduction of the bicrystal which is defined as the 
system of the two adjacent crystals containing the 
planar interface. The starting point of the 
methodology of Pond & Bollmann, which was sub- 
sequently extended by Vlachavas (1980) and Pond & 
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